1,858 research outputs found

    Metrics With Vanishing Quantum Corrections

    Full text link
    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor TμνT_{\mu \nu} constructed from sums of terms the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called {\it universal} if, when evaluated on that Einstein metric, TμνT_{\mu \nu} is a multiple of the metric. A Ricci flat classical solution is called {\it strongly universal} if, when evaluated on that Ricci flat metric, TμνT_{\mu \nu} vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalisation; Einstein metrics with holonomy Sim(n2){\rm Sim} (n-2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalised Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all 4-dimensional Sim(2){\rm Sim}(2) Einstein metrics. We also discuss generalizations to higher dimensions.Comment: 23 page

    Brane Waves

    Full text link
    In brane-world cosmology gravitational waves can propagate in the higher dimensions (i.e., in the `bulk'). In some appropriate regimes the bulk gravitational waves may be approximated by plane waves. We systematically study five-dimensional gravitational waves that are algebraically special and of type N. In the most physically relevant case the projected non-local stress tensor on the brane is formally equivalent to the energy-momentum tensor of a null fluid. Some exact solutions are studied to illustrate the features of these branes; in particular, we show explicity that any plane wave brane can be embedded into a 5-dimensional Siklos spacetime. More importantly, it is possible that in some appropriate regime the bulk can be approximated by gravitational plane waves and thus may act as initial conditions for the gravitational field in the bulk (thereby enabling the field equations to be integrated on the brane).Comment: 9 pages v3:revised version, to appear in CQ

    A note on the peeling theorem in higher dimensions

    Full text link
    We demonstrate the ``peeling property'' of the Weyl tensor in higher dimensions in the case of even dimensions (and with some additional assumptions), thereby providing a first step towards understanding of the general peeling behaviour of the Weyl tensor, and the asymptotic structure at null infinity, in higher dimensions.Comment: 5 pages, to appear in Class. Quantum Gra

    Note on the invariant classification of vacuum type D spacetimes

    Get PDF
    We illustrate the fact that the class of vacuum type D spacetimes which are I\mathcal{I}-\emph{non-degenerate} are invariantly classified by their scalar polynomial curvature invariants

    General Kundt spacetimes in higher dimensions

    Full text link
    We investigate a general metric of the Kundt class of spacetimes in higher dimensions. Geometrically, it admits a non-twisting, non-shearing and non-expanding geodesic null congruence. We calculate all components of the curvature and Ricci tensors, without assuming any specific matter content, and discuss algebraic types and main geometric constraints imposed by general Einstein's field equations. We explicitly derive Einstein-Maxwell equations, including an arbitrary cosmological constant, in the case of vacuum or possibly an aligned electromagnetic field. Finally, we introduce canonical subclasses of the Kundt family and we identify the most important special cases, namely generalised pp-waves, VSI or CSI spacetimes, and gyratons.Comment: 15 page

    Bianchi identities in higher dimensions

    Full text link
    A higher dimensional frame formalism is developed in order to study implications of the Bianchi identities for the Weyl tensor in vacuum spacetimes of the algebraic types III and N in arbitrary dimension nn. It follows that the principal null congruence is geodesic and expands isotropically in two dimensions and does not expand in n4n-4 spacelike dimensions or does not expand at all. It is shown that the existence of such principal geodesic null congruence in vacuum (together with an additional condition on twist) implies an algebraically special spacetime. We also use the Myers-Perry metric as an explicit example of a vacuum type D spacetime to show that principal geodesic null congruences in vacuum type D spacetimes do not share this property.Comment: 25 pages, v3: Corrections to Appendix B as given in Erratum-ibid.24:1691,2007 are now incorporated (A factor of 2 was missing in certain Bianchi equations.

    Ricci identities in higher dimensions

    Get PDF
    We explore connections between geometrical properties of null congruences and the algebraic structure of the Weyl tensor in n>4 spacetime dimensions. First, we present the full set of Ricci identities on a suitable "null" frame, thus completing the extension of the Newman-Penrose formalism to higher dimensions. Then we specialize to geodetic null congruences and study specific consequences of the Sachs equations. These imply, for example, that Kundt spacetimes are of type II or more special (like for n=4) and that for odd n a twisting geodetic WAND must also be shearing (in contrast to the case n=4).Comment: 8 pages. v2: typo corrected between Propositions 2 and 3. v3: typo in the last term in the first line of (11f) corrected, missing term on the r.h.s. of (11p) added, first sentence between Propositions 2 and 3 slightly change

    Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations

    Full text link
    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ~30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.Comment: Accepted for publication in The Astrophysical Journal. 15 pages, 27 figures. (v2 corrects citation

    Higher dimensional VSI spacetimes

    Get PDF
    We present the explicit metric forms for higher dimensional vanishing scalar invariant (VSI) Lorentzian spacetimes. We note that all of the VSI spacetimes belong to the higher dimensional Kundt class. We determine all of the VSI spacetimes which admit a covariantly constant null vector, and we note that in general in higher dimensions these spacetimes are of Ricci type III and Weyl type III. The Ricci type N subclass is related to the chiral null models and includes the relativistic gyratons and the higher dimensional pp-wave spacetimes. The spacetimes under investigation are of particular interest since they are solutions of supergravity or superstring theory.Comment: 14 pages, changes in second paragraph of the discussio
    corecore